Conceptualizando VIII: Papel de la 18-F FDG en la estadificación y respuesta al tratamiento del linfoma en niños y adolescentes, con enfoque en el LNH


  1. Sanders J, Glader B, Cairo M, et al. Guidelines for the pediatric cancer centers and role of such centers in diagnosis and treatment. American Academy of Pediatrics Section Statement Section on Hematology/Oncology. Pediatrics 1997;99:139-41.
  2. Percy CL, Smith MA, Linet M, et al. Lymphomas and reticuloendothelial neoplasms. In: Ries LA, Smith MA, Gurney JG, et al., eds.: Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. Bethesda, Md: National Cancer Institute, SEER Program, 1999.
  3. Sandlund JT, Downing JR, Crist WM. Non-Hodgkin's lymphoma in childhood. New Eng J Med 1996;334:1238-48.
  4. Paes FM, Kalkanis DG, Sideras PA, Serafini AN. FDG PET/CT of extranodal Involvement in non- Hodgkin lymphoma and Hodgkin disease. Radiographics 2010; 30:269–91.
  5. Pagnuco G, Vanelli L, Gervasi F. Multidimensional flow cytometry immunophenotyping of haematologic malignancies. Ann N Y Acad Sci 2002;963:313-21.
  6. Orfao A, Schmitz G, Brando B, et al. Clinically useful information provided by the flow cytometry immunophenotyping of hematologic malignancies: current status and future directions. Clin Chem 1999;45:1708-17.
  7. Lehninger AL. Biochemistry: Diabetes Mellitus 2nd Ed. Worth Publisher New York 1975:845-9.
  8. Nuutinen J, Minn H, Bergman J, et al. Uncoupling of fatty acid and glucose metabolism in malignant lymphoma: a PET study. Br J Cancer 1999;80:513–8.
  9. Medina RA, Owen GI. Glucose transporters: expression, regulation and cancer. Biol Res 2002;35:9–26.
  10. Yamamoto T, Seino Y, Fukumoto H. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990;170:223–30.
  11. Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 2000;57:170–8.
  12. Gulledge CJ, Dewhirst MW. Tumor oxygenation: a matter of supply and demand. Anticancer Res 1996;16:741–9.
  13. Shim HK, Lee WW, Park SY, et al. Expressions of glucose transporter types 1 and 3 and hexokinase-II in diffuse large B-cell lymphoma and other B-cell non-Hodgkin’s lymphomas. Nucl Med Biol 2009;36:191–7.
  14. Koga H, Matsuo Y, Sasaki M, et al. Differential FDG accumulation associated with GLUT-1 expression in a patient with lymphoma. Ann Nucl Med 2003;17:327–31.
  15. Li LF, Zhou SH, Zhao K, et al. Clinical significance of FDG single-photon emission computed tomography: computed tomography in the diagnosis of head and neck cancers and study of its mechanism. Cancer Biother Radiopharm 2008;23:701–14.
  16. Shim HK, Lee WW, Park SY, et al. Relationship between FDG uptake and expressions of glucose transporter type 1, type 3, and hexokinase-II in Reed–Sternberg cells of Hodgkin lymphoma. Oncol Res 2009;17:331–7.
  17. Prante O, Maschauer S, Fremont V, et al. Regulation of uptake of 18F-FDG by a follicular human thyroid cancer cell line with mutation- activated K-ras. J Nucl Med 2009;50:1364–70.
  18. Ahn KJ, Hwang HS, Park JH, et al. Evaluation of the role of hexokinase type II in cellular proliferation and apoptosis using human hepatocellular carcinoma cell lines. J Nucl Med 2009;50:1525–32.
  19. Paik JY, Ko BH, Jung KH, et al. Fibronectin stimulates endothelial cell 18F-FDG uptake through focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt signaling. J Nucl Med 2009;50:618–24.
  20. Kim JW, Zeller KI, Wang Y, et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromat in immuno precipitation assays. Mol Cell Biol 2004;24:5923–36.
  21. Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004;64:3892–9.
  22. Robey IF, Lien AD, Welsh SJ, et al. Hypoxia inducible factor-1α and the glycolytic phenotype in tumors. Neoplasia 2005;7:324–30.
  23. Zhang H, Gao P, Fukuda R, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007;11:407–20.
  24. Kaira K, Endo M, Abe M, et al. Biologic correlation of 2-[18F]-fluoro-2-deoxy-D-glucose uptake on positron emission tomography in thymic epithelial tumors. J Clin Oncol 2010;28:3746–53.
  25. Kim IJ, Kim SS, Kim SJ, et al. Relationship between biological marker expression and fluorine-18 fluorodeoxyglucose uptake in incidentally detected thyroid cancer. Cancer Biother Radiopharm 2010;25:309–15.
  26. Robey IF, Stephen RM, Brown KS, et al. Regulation of the Warburg effect in early- passage breast cancer cells. Neoplasia 2008;10:745–56.
  27. Kaira K, Endo M, Abe M, et al. Biologic correlates of 18F-FDG uptake on PET in pulmonary pleomorphic carcinoma. Lung Cancer 2011;71:144-50.
  28. Fang J, Luo XM, Yao HT, et al. Expression of glucose transporter-1, hypoxia-inducible factor-1α, phosphatidylinositol 3-kinase and protein kinase B (Akt) in relation to [18F]Fluorodeoxyglucose uptake in nasopharyngeal diffuse large B-cell lymphoma: a case report and literature review. J Int Med Res 2010;38:2160–8.
  29. Shou Y, Lu J, Chen T, et al. Correlation of fluorodeoxyglucose uptake and tumor-proliferating antigen Ki-67 in lymphomas. J Cancer Res Ther 2012;8:96-102.
  30. Schoder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2005;23:4643–51.
  31. Elstrom R, Guan L, Baker G, et al. Utility of FDG PET scanning in lymphoma by WHO classification. Blood 2003;101:3875–6.
  32. Kako S, Izutsu K, Ota Y, et al. FDG PET in T- cell and NK-cell neoplasms. Ann Oncol 2007;18:1685–90.
  33. Allen-Auerbach M, de Vos S, Czernin J. The impact of fluorodeoxyglucose-positron emission tomography in primary staging and patient management in lymphoma patients [vii.]. Radiol Clin North Am 2008;46:199–211.
  34. Hutchings M, Loft A, Hansen M, et al. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake. Hematol Oncol 2006;24:146–50.
  35. Schoder H, Moskowitz C. PET imaging for response assessment in lymphoma: potential and limitations [viii.]. Radiol Clin North Am 2008;46:225–41.
  36. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25:579-86.
  37. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: Is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001;19:414-9.
  38. Spaepen K, Stroobants S, Dupont P, et al. Early restaging positron emission tomography with 18F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 2002;13:1356-63.
  39. Haioun C, Itti E, Rahmouni A, et al. [18F]fluoro- 2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: An early prognostic tool for predicting patient outcome. Blood 2005;106:1376-81.
  40. Gallamini A, Rigacci L, Merli F, et al. Predictive value of positron emission tomography performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica 2006;91:475-81.
  41. Kostakoglu L, Coleman M, Leonard JP, et al. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 2002;43:1018-27.
  42. Zinzani PL, Tani M, Fanti S, et al. Early positron emission tomography (PET) restaging: A predictive final response in Hodgkin’s disease patients. Ann Oncol 2006;17:1296-300.
  43. Schoder H, Moskowitz C. PET imaging for re- sponse assessment in lymphoma: potential and limitations [viii.]. Radiol Clin North Am 2008;46:225–41.
  44. Juweid M, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop criteria (IWC) and 18F-fluorodeoxyglucose positron emission tomography (PET). J Clin Oncol 2005;23:4652- 61.
  45. Moulin-Romsee G, Spaepen K, Stroobants S, Mortelmans L. Non-Hodgkin lymphoma: retrospective study
on the cost-effectiveness of early treatment response assessment by FDG-PET. Eur J Nucl Med Mol Imaging 2008;35:1074–80.
  46. Colmenter R et al. PET/CT en Oncología. Amolca 2007
  47. Israel O, Keidar Z, Bar-Shalom R. Positron Emission Tomography in the evaluation of lymphoma. Sem Nucl Med 2004;34:166-79.
  48. Reske SN. PET and restaging of malignant lymphoma including residual masses and relapse. Eur J Nucl Med Mol Imaging 2003;30(S1):S89-S96.
  49. Friedberg JW, Chengazi V. PET scans in the staging of lymphoma: Current status. The Oncologist 2003;8:438-47.
  50. Connors JM. Positron emission tomography in the management of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2011;2011:317-22.
  51. Appropriate use of FDG-PET for the management of cancer patients. IAEA Human Health Series No. 9 - Vienna, 2010.
  52. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) reviewed on 3/13/2012 for utilization of F 18 fludeoxyglucose (FDG) PET and PET/CT (available at: fessionals/physician_gls/f_guidelines.asp).
  53. Spaepen K, Stroobants S, Dupont P, et al. Early restaging positron emission tomography with (18) F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 2002;13:1356–63.
  54. Haioun C, Itti E, Rahmouni A, et al. [18F] Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood 2005;106:1376–81.
  55. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25:579–86.
  56. Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol 1999;7:1630–6.
  57. Song MK, Chung JS, Shin HJ, et al. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement. Ann Hematol 2012;91:697–703.