Radiofármacos basados en el anticuerpo monoclonal humanizado Nimotuzumab


  1. Laskin JJ, Sandler AB. Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treat Rev 2004; 30:1-17.
  2. Perez R, Moreno E. EGFR-targeting therapy as an evolving concept: learning from nimotuzumab clinical development. Chin Clin Oncol 2013; 26:1-10. doi: 10.3978/j.issn.2304-3865.2013.11.09.
  3. Talavera A, Friemann R, Gomez-Puerta S, et al. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 2009; 69:5851-9.
  4. Crombet T, Figueredo J, Catala M, et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3. Report from a Phase I/II Trial. Cancer Biol Ther 2006; 5:375-9.
  5. Babu KG, Prabhash K, Vaid Ak, et al. Nimotuzumab plus chemotherapy versus chemotherapy alone in advanced non-small-cell lung cancer: a multicenter, randomized, open-label Phase II study. Onco Targets Ther 2014; 7:1051-60.
  6. Diaz Miqueli A, Blanco R, Garcia B, et al. Biological activity in vitro of Anti-Epidermal Growth Factor Receptor monoclonal antibodies with different affinities. Hybridoma 2007; 26:423-32.
  7. Berger C, Krengel U, Stang E, et al. Nimotuzumab and Cetuximab block ligand-independent EGF receptor signaling efficiently at different concentrations. J Immunother 2011; 34: 550-5.
  8. Ramakrishnan M, Eswaraiah A, Crombet T, et al. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs 2009; 1:41-48.
  9. Perera A, Pérez C. Radiomarcaje de anticuerpos con Tecnecio-99m. Rev Esp Med Nucl 1998; 17: 302-9.
  10. Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 2008; 60:1347-70.
  11. Mishra Ak, Iznaga-Escobar N, Figueredo R, et al. Preparation and comparative evaluation of 99mTc-labeled 2-iminothiolane modified antibodies and CITC-DTPA immunoconjugates of anti-EGF-receptor antibodies. Methods Find Exp Clin Pharmacol 2002; 24:653-60.
  12. Maraveyas A, Snook D, Hird V, et al. Pharmacokinetics and toxicity of an yttrium-90-CITC-DTPA-HMFG1 radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. Cancer 1994; 73 (Suppl 3): 1067-75.
  13. Perera A, Paredes M, Kumar Mishra A, et al. Marcaje indirecto de anticuerpos monoclonales empleando la N2-dietilentriamino-pentaacetil lisina amida como agente quelatente del 99mTc. Alasbimn J 2009; 11:Article N° AJ45-2.
  14. Meszaros LK, Dose A, Biagini SC, Blower PJ. Hydrazinonicotinic acid (HYNIC) – Coordination chemistry and applications in radiopharmaceutical chemistry. Inorganica Chim Acta 2010; 363: 1059-69.
  15. García MF, Zhang Z, Shah M, et al. 99mTc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging. Bioorg Med Chem 2016; 24:1209-15.
  16. Teixeira V, Cabral P, Porcal W. Microwave-assisted solid-phase synthesis of nicotinyl hydrazones for use in radiochemistry of technetium-99m. Arkivoc 2018; part V:1-10.
  17. Calzada V, García MF, Alonso-Martínez LM, et al. Fab(nimotuzumab)-HYNIC-99mTc: Antibody fragmentation for molecular imaging agents. Anticancer Agents Med Chem 2015; 16:1184-9.
  18. Calzada V, Garcia F, Fernández M, et al. Labeling and biological evaluation of 99mTc-HYNIC-Trastuzumab as a potential radiopharmaceutical for in vivo evaluation of HER2 expression in breast cancer. World J Nucl Med 2013; 12:27-32.
  19. Camacho X, García MF, Calzada V, et al. Synthesis and evaluation of 99mTc Chelate-conjugated Bevacizumab. Curr Radiopharm 2013; 6:12-9.
  20. García MF, Camacho X, Calzada V, et al. Synthesis of 99mTc-Nimotuzumab with Tricarbonyl Ion: in vitro and in vivo studies. Curr Radiopharm 2012; 5:59-64.
  21. Alberto R, Schibli R, Egli A, Schubiger AP. A novel organometallic aqua compkex of technetium for the labeling of biomolecules. Synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 1998; 120:7987.
  22. Zhang X, Cabral P, Bates M, et al. In vitro and in vivo Evaluation of [99mTc(CO)3]-Radiolabeled ErbB-2-targeting peptides for breast carcinoma imaging. Curr Radiopharm 2010; 3: 308-21.
  23. Camacho X, García MF, Calzada V, et al. [99mTc(CO)3]-Radiolabeled Bevacizumab: In vitro and in vivo evaluation in a melanoma model. Oncology 2013; 84:200-9.
  24. Kameswaran M, Pandey U, Sarma HD, Samuel G. Preparation of 99mTc carbonyl DTPA-bevacizumab and its bioevaluation in a melanoma model. Ann Nucl Med 2014; 28:911-6.
  25. Iznaga N, Morales A, Ducongé J, et al. Pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats. Nucl Med Biol 1998; 25:17-23.
  26. Morales A, Ducongé J, Caballero I, et al. Biodistribution of 99mTc-Labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma. Nucl Med Biol 1999; 26:275-9.
  27. Morales A, Ducongé J, Alvarez D, et al. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for inmunoscintigraphic studies. Nucl Med Biol 2000; 27:199-206.
  28. Ramos M, Rodríguez N, Oliva JP, et al. 99mTc-labeled anti-human epidermal growth factor receptor antibody (ior egf/r3) in patients with tumor of epithelial origin: Part III. Clinical trials safety and diagnostic efficacy. J Nucl Med 1999; 40:768-75.
  29. Crombet T, Torres O, Rodríguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: Preliminary study. Hybridoma 2001; 20:131-6.
  30. Vallis KA, Reilly RM, Chen P, et al. A phase I study of 99mTc-hR3 (DiaCIM1), a humanized immunoconjugate directed towards the epidermal growth factor receptor. Nucl Med Commun 2002; 23:1155-64.
  31. Crombet T, Torres L, Neninger E, et al. Pharmacological evaluation of humanized anti-epidermal growth factor receptor, monoclonal antibody h-R3, in patients with advanced epithelial-derived cancer. J Immunother 2003; 26:139-48.
  32. Peña Y, Perera A, Batista JF. Immunoscintigraphy and radioimmunotherapy in Cuba: Experiences with labeled monoclonal antibodies for cancer diagnosis and treatment (1993–2013). MEDICC Rev 2014; 16:55-60.
  33. Torres LA, Perera A, Batista JF, et al. Phase I/II clinical trial of the humanized anti-EGF-r monoclonal antibody h-R3 labelled with 99mTc in patients with tumour of epithelial origin. Nucl Med Commun 2005; 26:1049-57.
  34. Torres LA, Coca MA, Batista JF, et al. Biodistribution and internal dosimetry of the 188Re-labelled humanized monoclonal antibody anti-epidemal growth factor receptor, nimotuzumab, in the locoregional treatment of malignant gliomas. Nucl Med Commun 2008; 29:66-75.
  35. Peña Y, Crombet T, Batista JF, et al. Immunoscintigraphy with 99mTc-Nimotuzumab for planning immunotherapy in patients with bone metastases due to prostate cancer. Clin Nucl Med 2016; 41:244-6.
  36. Peña Y, Crombet T, Batista JF, et al. Immunoscintigraphy with 99mTc-nimotuzumab in patients with non small cell lung cancer that will receive therapy with the monoclonal antibody. Ann Clin Case Rep 2017; 2:1354.
  37. Peña Y, Crombet T, Vergara A, et al. Immunoscintigraphy with 99mTc-14F7 and 99mTc-Nimotuzumab in patients with non-small cell lung cancer. Trends Cancer Res Chemother 2018; 1:1-2. doi: 10.15761/TCRC.10001121-2.
  38. Izquierdo-Sánchez V, Muñiz-Hernández S, Vázquez-Becerra H, et al. Biodistribution and Tumor Uptake of 67Ga-Nimotuzumab in a Malignant Pleural Mesothelioma Xenograft. Molecules 2018; 3138: 1-12.
  39. Mendler CT, Gehring T, Wester HJ, et al. 89Zr-labeled versus 124I-labeled αHER2 fab with optimized plasma half-life for high-contrast tumor imaging in vivo. J Nucl Med 2015; 56: 1112–8.
  40. Bhatt NB, Pandya DN, Wadas TJ. Recent advances in Zirconium-89 chelator development. Molecules 2018; 23:638.
  41. Zalutsky MR. Potential of immuno-positron emission tomography for tumor imaging and immunotherapy planning. Clin Cancer Res 2006; 12:1958-60.
  42. Chekol R, Bernhard W, Viswas RS, et al. 89Zr-nimotuzumab for potential clinical translation as an anti-EGFR immunoPET agent. J Nucl Med 2017; 58 (Suppl 1):688.
  43. Chekol R, Solomon VR, Alizadeh E, et al. 89Zr-nimotuzumab for immunoPET imaging of epidermal growth factor receptor I. Oncotarget 2018; 9:17117-32.
  44. Tang Y, Hu Y, Liu W, et al. A radiopharmaceutical [89Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo. Nucl Med Biol 2019; 70:23–31.
  45. Duvenhage J, Ebenhan T, Garny S, et al. Molecular imaging of a Zirconium-89 labeled antibody targeting plasmodium falciparum–Infected human erythrocytes. Mol Imaging Biol 2020; 22:115-23.
  46. Ensayo clínico: Evaluation of 89Zr-DFO-nimotuzumab for Non-invasive Imaging of EGFR Positive Cancers by Positron Emission Tomography (PET). En:
  47. Leyva R, Perera A, Morín JA. Radiofármacos en inmunocentelleografía y radioinmunoterapia. Nucleus 2012; 52:68-72.
  48. Emrich JG, Brady LW, Quang TS, et al. Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients: Ten-year synopsis of a novel treatment. Am J Clin Oncol 2002; 25:541–6.
  49. Fasih A, Fonge H, Cai ZZ, et al. 111In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer. Breast Cancer Res Treat 2012; 135:189-200.
  50. Iznaga-Escobar N, Rodríguez Perez R. ior egf/r3: antineoplastic monoclonal antibody. Drug Fut 1999; 24:1301-5.
  51. Fleuren EDG, Versleijen-Jonkersa YMH, Heskampb S, et al. Theranostic applications of antibodies in oncology. Mol Oncol 2014; 8:799-812.
  52. Barta, P, Laznickova A, Laznice, M, et al. Preclinical evaluation of radiolabelled nimotuzumab, a promising monoclonal antibody targeting the epidermal growth factor receptor. J Label Compd Radiopharm 2013; 56:280-8.
  53. Kameswaran, M, Samuel G, Dev Sarma H, et al. 131I-Nimotuzumab - A potential radioimmunotherapeutic agent in treatment of tumors expressing EGFR. Appl Radiat Isot 2015; 102:98-102.
  54. Iznaga-Escobar N. 188Re-direct labelling of monoclonal antibodies for radioimmunotherapy of solid tumors: Biodistribution, normal organ dosimetry, and toxicology. Nucl Med Biol 1998; 25:441-7.
  55. Iznaga-Escobar N. Direct radiolabeling of monoclonal antibodies with rhenium-188 for radioinmmunotherapy of solid tumors- a review of radiolabeling characteristics, quality control an in vitro stability studies. Appl Radiat Isot 2001; 54:399-406.
  56. Perera A, Leyva R, Gamboa R, et al. Marcaje del anticuerpo monoclonal humanizado h-R3 con 188Re. Nucleus 2003; 33:64-8.
  57. Iznaga-Escobar N, Ramírez IL, Izquierdo JC, et al. 188Re-labeled antiepidermal growth factor receptor humanized monoclonal antibody h-R3: labeling conditions, in vitro and in vivo stability. Methods Find Exp Clin Pharmacol 2003; 25:703-11.
  58. Gonzalez-Navarro BO, Casaco A, León M, et al. High dose of h-R3, an anti-epidermal growth factor receptor monoclonal antibody labeled with 188Rhenium following intravenous injection into rats. J Appl Research 2006; 6:77-88.
  59. Gonzalez B, Casacó A, Alvarez P, et al. Radiotoxicity of h-R3 monoclonal antibody labeled with 188Re administered intracerebrally in rats. Hum Exp Toxicol 2000; 19:684-92.
  60. Gonzalez-Navarro B, Casacó-Parada A, Alvarez P, et al. Local and systemic toxicity of h-R3, an anti-epidermal growth factor receptor monoclonal antibody, labeled with 188-Osmiun after the intracerebral administration in rats. Exp Toxicol Pathol 2005; 56:313-9.
  61. Casaco A, López G, García I, et al. Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188Re in adult recurrent high-grade glioma. Cancer Biol Therapy 2008; 7:1-6.
  62. Puttemans J, Lahoutte T, D’Huyvetter M, Devoogdt N. Beyond the barrier: Targeted radionuclide therapy in brain tumors and metastases. Pharmaceutics 2019; 11:376. DOI:10.3390/pharmaceutics11080376.
  63. Bailly C, Vidal A, Bonnemaire C, et al. Potential for nuclear medicine therapy for glioblastoma treatment. Front Pharmacol 2019; 10:772. DOI: 10.3389/fphar.2019.00772.
  64. Beckford DR, Xiques A, Leyva R, et al. Nuevo radioinmunoconjugado 90Y-DOTA-h-R3. Síntesis y radiomarcaje. Nucleus 2007; 41:3-8.
  65. Beckford DR, Eigner S, Beran M, et al. Preclinical evaluation of 177Lu-Nimotuzumab: A potential tool for radioimmunotherapy of epidermal growth factor receptor–overexpressing tumors. Cancer Biother Radiopharm 2011; 26:DOI: 10.1089/cbr.2010.0916.
  66. Ondarse D, Leyva R, Zamora M, et al. Modificación del hR3 con DOTA-NHS. Marcaje con 90Y y biodistribución. Nucleus 2011; 49:26-32.
  67. Beckford DR, Eigner S, Eigner K, et al. Preparation and preclinical evaluation of 177Lu-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl Med Biol 2012; 39:3–13.
  68. Calzada V, Zhang X, Fernández M, et al. A potencial theranostic agent for EGF-R expression tumors: (177)Lu-DOTA-nimotuzumab. Curr Radiopharm 2012; 5:318-24.
  69. Beckford DR, Eigner S, Eigner K, et al. Lu-177/Y-90 Intermediate-affinity monoclonal antibodies targeting EGFR and HER2/c-neu: Preparation and preclinical evaluation. En: Theranostics, Gallium-68, and Other Radionuclides. 2012. Series title: 392. Springer-Verlag Berlin Heidelberg.
  70. Cooper MS, Sabbah E, Mather SJ. Conjugation of chelating agents to proteins and radiolabeling with trivalent metallic isotopes. Nat Protoc 2006; 1:314-7.
  71. Guerard F, Barbet J, Chatal JF, et al. Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy? Q J Nucl Med Mol Imaging 2015; 59:161-7.
  72. Khan B, Khan M, Causey P, et al. Therapeutic efficacy of Ac-labeled nimotuzumab in a mouse model of EGFR positive KRAS-mutant metastatic colorectal cancer (mCRC). J Nucl Med 2020; 61 (Suppl 1): 233.